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Abstract
We consider the differential equations y ′′ = λ0(x)y ′ + s0(x)y, where λ0(x),

s0(x) are C∞-functions. We prove (i) if the differential equation has a
polynomial solution of degree n > 0, then δn = λnsn−1 − λn−1sn = 0, where
λn = λ′

n−1 + sn−1 + λ0λn−1 and sn = s ′
n−1 + s0λk−1, n = 1, 2, . . . . Conversely

(ii) if λnλn−1 �= 0 and δn = 0, then the differential equation has a polynomial
solution of degree at most n. We show that the classical differential equations
of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kinds),
Gegenbauer and the Hypergeometric type, etc obey this criterion. Further, we
find the polynomial solutions for the generalized Hermite, Laguerre, Legendre
and Chebyshev differential equations.

PACS number: 03.65.Ge

1. Introduction

The question as to whether a second-order linear homogeneous differential equation has a
polynomial solution has attracted much interest since the early classification of Bochner of
orthogonal polynomials [1]. In 1929, Bochner posed a problem of determining all families of
orthogonal polynomials that are solutions of the differential equation

(ax2 + bx + c)y ′′
n(x) + (dx + e)y ′

n(x) − µnyn(x) = 0. (1)

Bochner found that, up to a linear change of variable, only the classical polynomials of
Jacobi, Laguerre and Hermite and the Bessel polynomials satisfied a second-order differential
equation [2]–[9] of the form (1). In general, the question as to which second-order linear
homogeneous differential equation has polynomial solutions (not necessary a sequence of
orthogonal polynomials) is not easily answered, since it would involve studying a wide variety
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of equations, including those with regular and irregular singular points. In this paper, we
present a simple criterion for the existence of polynomial solutions of a differential equation
of the form

y ′′ = λ0y
′ + s0y (2)

where λ0, s0 are C∞-functions. A key feature of the present work is to note the invariant
structure of the right-hand side of (2) under further differentiation. Indeed, if we differentiate
(2) with respect to x, we find that

y ′′′ = λ1y
′ + s1y (3)

where λ1 = λ′
0 + s0 + λ2

0 and s1 = s ′
0 + s0λ0. If we find the second derivative of equation (2),

we obtain

y(4) = λ2y
′ + s2y (4)

where λ2 = λ′
1 + s1 + λ0λ1 and s2 = s ′

1 + s0λ1. Thus, for (n + 1)th and (n + 2)th derivatives,
n = 1, 2, . . . , we have

y(n+1) = λn−1y
′ + sn−1y (5)

and

y(n+2) = λny
′ + sny (6)

respectively, where

λn = λ′
n−1 + sn−1 + λ0λn−1 and sn = s ′

n−1 + s0λn−1. (7)

From (5) and (6) we have

λny
(n+1) − λn−1y

(n+2) = δny where δn = λnsn−1 − λn−1sn. (8)

In an earlier paper [11] we proved the principal theorem of the asymptotic iteration method
(AIM), namely

Theorem 1. Given λ0 and s0 in C∞(a, b), the differential equation (2) has the general solution

y(x) = exp

(
−

∫ x

α(t) dt

)[
C2 + C1

∫ x

exp

(∫ t

(λ0(τ ) + 2α(τ)) dτ

)
dt

]
(9)

if for some n > 0
sn

λn

= sn−1

λn−1
≡ α. (10)

The present paper is not about a classification of orthogonal polynomials which is a
well-established problem in the literature [1–8]. Rather, the principal goal of the present
paper is to characterize when equation (2) has a polynomial solution. In the next section,
we shall show that the differential equation (2) has a polynomial solution of degree n, if for
some n > 0, δn = 0. In section 3, we show through a detailed analysis that the classical
differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second
kinds), Gegenbauer and the Hypergeometric type, etc obey this criterion. In section 4, we apply
the criterion to obtain polynomial solutions to the generalized Hermite, Laguerre, Legendre
and Chebyshev differential equations. As we shall show, the criterion presented here works
whether or not the differential equation (2) has a set of orthogonal polynomial solutions, or a
class of orthogonal polynomial solutions in the quasi-definite sense [10].
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2. A criterion for polynomial solutions

The existence of polynomial solutions is characterized by the vanishing of δn. This is the
principal theoretical result of this paper. We have:

Theorem 2. (i) If the second-order differential equation (2) has a polynomial solution of
degree n, then

λnsn−1 − λn−1sn ≡ δn = 0. (11)

Conversely (ii) if λnλn−1 �= 0, and δn = 0, then the differential equation (2) has a polynomial
solution whose degree is at most n.

Proof. (i) For the given differential equation (2), if y is a polynomial of degree at most n we
have y(n+1) = y(n+2) = 0. Consequently we conclude from (8) that δn = 0. (ii) Conversely,
if δn = 0 and λnλn−1 �= 0, then we have sn−1/λn−1 = sn/λn ≡ α, and, from theorem
1, we conclude that a solution is given by y = exp

(−∫ x
α(t) dt

)
. Therefore, in particular,

y ′ = −αy = − sn−1

λn−1
y. Consequently, from y(n+1) = λn−1y

′ + sn−1y, we infer that y(n+1) = 0,

or, equivalently, that y is a polynomial of degree at most n. �

Theorem 2 gives us the condition under which the given differential equation has a
polynomial solution. Theorem (1), in particular (9), provides a tool for the explicit computation
of these polynomials. In the next section, we apply these results to a variety of classes of
differential equations: in each case we provide the explicit condition which yields polynomial
solutions.

3. Some differential equations with polynomial solutions

In this section, we apply theorem 2 to the classical differential equations of mathematical
physics. First, we give an alternative proof to Bochner’s results (1), using the criterion
developed in theorem 2.

Theorem 3. The second-order differential equation (1) has a polynomial solution of degree
n if

µn = n(d + (n − 1)a), n = 0, 1, 2, . . . . (12)

The corresponding polynomial solutions are

y0 = 1

y1 = dx + e

y2 = (d + a)(d + 2a)x2 + 2(b + e)(d + a)x + e(b + e) + c(d + 2a)

y3 = (d + 2a)(d + 3a)(d + 4a)x3 + 3(d + 2a)(d + 3a)(e + 2b)x2

+ 3(d + 2a)(b(3e + 2b) + c(4a + d) + e2)x

+ 4dbc + e3 + 3dec + 10aec + 2eb2 + 3e2b

· · · = · · ·
Proof. By means of theorem 2, we find for λ0 = − dx+e

ax2+bx+c
and s0 = µ

ax2+bx+c
that the

termination condition δn = λnsn−1 − λn−1sn = 0 yields

δn = − 1

(ax2 + bx + c)n+1

n∏
k=0

(k(d + (k − 1)a) − µk), n = 1, 2, . . . (13)
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Table 1. Application of AIM to classical differential equations. For each differential equation
which gives the condition under which it has polynomial solutions.

DE λ0 s0 δn δn = 0, n = 0, 1, . . .

Cauchy–Euler1 α(x−b)

(x−a)2
β

(x−a)2
(−1)n+1

(a−x)2n+2

n∏
i=1

(β + i(1 − i + α)) β = n(n − 1 − α)

Hermite2a 2x −2k 2n+1
n∏

i=1
(k − i) k = n

Hermite2b ax + b c (−1)n+1
n∏

i=0
(c + ia) c = −na

Laguerre (1 − 1
x
) a

x
(−1)n+1

xn+1

n∏
i=0

(i + a) a = −n

Confluent3 (b − c
x
) a

x
(−1)n+1

xn+1

n∏
i=0

(ib + a) a = −nb

Hypergeometric (a+b+1)x−c
x(1−x)

ab
x(1−x)

1
xn+1(x−1)n+1

n∏
i=0

(a + i)(b + i) a = −n or b = −n

Legendre 2x

1−x2
m(m+1)

x2−1
(−1)n

(x2−1)n+1

n∏
i=0

(m2 − i2) m = n

Jacobi (α+β+2)x+β+α

1−x2
−γ

1−x2

n∏
i=0

(i(i + 1 + α + β) − γ ) γ = n(n + α + β + 1)

Chebyshev4a x

1−x2
−m

1−x2
(−1)n+1

(x2−1)n+1

n∏
i=0

(m − i2) m = n2

Chebyshev4b 3x

1−x2
−m

1−x2
−1

(x2−1)n+1

n∏
i=0

(i((i + 2) − m) m = n(n + 2)

Gegenbauer (1+2k)x

(1−x2)

−λ

(1−x2)

−1
(x2−1)n+1

n∏
i=0

(i(i + 2k) − λ) λ = n(n + 2k)

Hyperspherical 2(1+k)x

(1−x2)

−λ

(1−x2)

−1
(x2−1)n+1

n∏
i=0

(i(i + 1 + 2k) − λ) λ = n(n + 1 + 2k)

Bessel5a −2(x+1)

x2
γ

x2
(−1)n+1

x2n+2

n∏
i=0

(γ − i(i + 1)) γ = n(n + 1)

Generalized Bessel5b −(ax+b)

x2
γ

x2
(−1)n+1

x2n+2

n∏
i=0

(γ − i(i − 1 + a)) γ = n(n + a − 1)

which yields for δn = 0 that µn = n(d + (n − 1)a) as required. For n = 0, 1, 2, . . . i.e.
µ0 = 0, µ1 = d, µ2 = 2(d + a), . . . , we obtian by

yn = exp

(
−

∫ x sn(t)

λn(t)
dt

)
, n = 0, 1, 2, . . . , (14)

the polynomial solutions just mentioned. �

In table 1, we summarize the well-known differential equations which have polynomial
solutions (as eigenfunctions). In each case, we give the explicit criterion, δn = 0, of
theorem 2.

3.1. Some remarks on table 1

1. This differential equation is a generalization of the Cauchy–Euler linear equation

x2y ′′ + αxy ′ + βy = 0. (15)

It is possible, however, to apply AIM to the differential equation (15). The termination
condition yields in this case

δn = (−1)n+1

x2n+2

n∏
i=1

(β + i(1 − i + α)) = 0 or β = n(n − 1 − α) (16)
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while the corresponding polynomials, as given by (14), are y0 = 1, y1 = x, y2 =
x2, . . . , yn = xn. It is clear that these polynomials cannot form an orthogonal-polynomial
sequence [10].

2b. This differential equation can be regarded as a generalization of the well-known Hermite
differential equation2a . It is an elementary example of differential equation with non-
rational coefficients (i.e. with s0 and λ0 non-rational) which has nonconstant polynomial
solutions for c �= 0.

3. This is known as the confluent hypergeometric differential equation. It is also known as
Kummer’s differential equation or Pochhammer–Barnes equation [19].

4a,b. This differential equation is known as Chebyshev’s differential equation of the first kind
and Chebyshev’s differential equation of the second kind, respectively. It is interesting to
note that these differential equations are special cases of

(1 − x2)y ′′ − axy ′ + µy = 0. (17)

If we apply AIM directly to (17), we have by means of the termination condition (11) that

δn = − 1

(x2 − 1)n+1

n∏
k=0

(i(i + a − 1) − µi)

thus, for δn = 0, we must have µn = n(n + a − 1). The corresponding polynomial
solutions, for n = 0, 1, 2, . . . , are y0 = 1, y1 = x, y2 = (a + 1)x2 − 1, y3 = (a + 1)x3 −
3x, . . . , and in general

yn = 2F1

(
−n, n + a − 1,

a

2
,

1 − x

2

)

up to a constant. Here, 2F1, Gauss’ hypergeometric function, is defined by

2F1(−n, b; c; x) =
n∑

k=0

(−n)k(b)k

(c)kk!
xk, (18)

where the Pochhammer symbol (a)k defined by

(a)0 = 1, (a)k = a(a + 1)(a + 2) · · · (a + k − 1) = �(a + k)

�(a)
.

5a,b. The polynomial solutions of these differential equations were studied by Krall and Frink
[20]. The corresponding (Bessel) polynomial solutions are orthogonal in the quasi-definite
sense [10].

In table 2 we find the corresponding polynomial solutions for each differential equation
mentioned in table 1. As an elementary application to quantum mechanics, we consider the
Schrödinger equation

−d2ψ

dr2
+

(
−A

r
+

γ (γ + 1)

r2

)
ψ = Eψ.

Writing ψ(r) = rγ +1 e−αry(r), we easily find that y(r) must satisfy, for E = −α2, the
confluent hypergeometric differential equation

y ′′(r) = 2

(
α − γ + 1

r

)
y ′(r) +

(−A + 2α(γ + 1)

r

)
y(r).

The termination condition, mentioned in table 1, then yields E = −α2 = − A2

4(n+γ +1)2 ,
the eigenvalues of Schrödinger’s equation for the Kratzer potential. Furthermore, the
corresponding (un-normalized) eigenfunctions are given, by means of table 2, as

ψn(r) = (−1)nrγ +1e−√−Er(2γ + 2)n1F1(−n; 2γ + 2; 2
√−Er).
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Table 2. The corresponding polynomial solutions for each differential equation mentioned in
table 1.

DE yn, n = 0, 1, 2, . . .

Cauchy–Euler y0 = 1
y1 = x − b

y2 = (α − 1)(α − 2)x2 + 2(α − 1)(2a − αb)x

+α2b2 − a(2b + a)α + 2a2

· · ·
Hermite y0(x) = 1

y1(x) = x

y2(x) = 2x2 − 1
· · ·
y2n(x) = (−1)n2n(1/2)n1F1(−n; 1/2; x2),

y2n+1(x) = (−1)n2n(3/2)nx1F1(−n; 3/2; x2)

Hermite y0(x) = 1
y1(x) = ax + b

y2(x) = (ax + b)2 − a

· · ·
y2n(x) = (−1)n(2a)n(1/2)n1F1(−n; a/2; (ax + b)2/2),

y2n+1(x) = (−1)n(2a)n(3/2)n(ax + b)1F1(−n; 3a/2; (ax + b)2/2).

Laguerre y0 = 1
y1 = x − 1
y2 = x2 − 4x + 2
· · ·
yn = (−1)nn!1F1(−n, 1, x)

Confluent y0 = 1
y1 = bx − c

y2 = (1 + c)c − 2b(1 + c)x + b2x2

· · ·
yn = (−1)n(c)n1F1(−n, c, bx)

Hypergeometric y0 = 1
y1 = x + c

y2 = 2x2 + 4(c + 1)x + c(c + 1)

· · ·
yn = (c)n2F1(−n,−n; c, x)

Legendre y0 = 1
y1 = x

y2 = −1 + x2

· · ·
yn = 2F1(−n, 1 + n; 1, (1 − x)/2).

Jacobi y0 = 1
y1 = (α − β) + (2 + α + β)x

y2 = (3 + α + β)(4 + α + β)x2 + 2(α − β)(3 + α + β)x − 4 − c − d + (c − d)2

· · ·
yn = (α + 1)n/n!2F1(−n, n + α + β + 1;α + 1; (1 − x)/2).

Chebyshev y0 = 1
y1 = x

y2 = 2x2 − 1
· · ·
yn = 2F1(−n, n, 1

2 , (1 − x)/2)
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Table 2. (Continued.)

DE yn, n = 0, 1, 2, . . .

Chebyshev y0 = 1
y1 = x

y2 = 4x2 − 1
· · ·
yn = (n + 1)2F1(−n, n + 2, 3

2 , (1 − x)/2)

Gegenbauer y0 = 1
y1 = x

y2 = 2(k + 1)x2 − 1
· · ·
yn = (2k)n2F1(−n, n + 2k; k + 1/2; (1 − x)/2)

Hyperspherical y0 = 1
y1 = x

y2 = (2k + 3)x2 − 1
· · ·
yn = (2k + 1)n2F1(−n, n + 2k + 1; k + 1; (1 − x)/2)

Bessel y1(x) = 1 + x

Polynomials y2(x) = 1 + 3x + 3x2

y3(x) = 1 + 6x + 15x2 + 15x3

· · ·
yn(x) = 2F0(−n, n + 1;−;−x/2)

Generalized Bessel y1(x) = ax + b

Polynomials y2(x) = (a + 1)(a + 2)x2 + 2b(a + 1)x + b2

y3(x) = (a + 2)(a + 3)(a + 4)x3 + 3b(a + 2)(a + 3)x2 + 3b2(2 + a)x + b3

· · ·
yn(x) = bn

2F0(−n, n + a − 1;−;−x/b)

3.2. The case of λ0 = 0

In the early development of the asymptotic iteration method [11], one gets the impression
that the method is not applicable in the case of λ0 = 0. This impression naturally arises
because of the condition sn

λn
= sn−1

λn−1
, n = 0, 1, 2, . . . . If λ0 = 0, however, we may have using

(5) and (6) that yn+2

yn+1
= sn(

λn
sn

y ′+y)

sn−1(
λn−1
sn−1

y ′+y)
for which the corresponding asymptotic condition now

reads

λn

sn

= λn−1

sn−1
≡ α, n = 1, 2, . . . (19)

This leads to the essentially equivalent termination condition (11)

δn = λnsn−1 − λn−1sn = 0, n = 1, 2, . . .

A simple example which shows the use of AIM in the case of λ0 = 0 is the differential equation
x2y ′′ − 2y = 0. Direct use of AIM implies that δ2 = 0 and a polynomial solution by means
of (14) is y = x2.
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4. Application to generalized Hermite, Laguerre, Legendre and Chebyshev differential
equations

Theorem 4. For N a positive integer and a, b �= 0, the second-order linear differential
equation (known as the generalized Laguerre differential equation)

u′′ =
(

axN − b

x

)
u′ − acxN−1u, (20)

has a polynomial solution if

c = n(N + 1), n = 0, 1, 2, . . . . (21)

The corresponding polynomial solutions are

un(x) = (N + 1)n
(

b + N

1 + N

)
n

1F1

(
−n; b + N

1 + N
; axN+1

1 + N

)
. (22)

Proof. For N = 1, the termination condition (11) yields c = 2n, n = 0, 1, 2, . . . while (14)
implies

un(x) =




1, if n = 0 (or c = 0)

1 + b − ax2, if n = 1 (or c = 2)

3 + 4b + b2 − 2a(3 + b)x2 + a2x4, if n = 2 (or c = 4)

· · ·
2n

(
b + 1

2

)
n

1F1

(
−n; b + 1

2
; ax2

2

)
, for n = 0, 1, 2, . . . (or c = 2n).

For N = 2, the termination condition (11) yields c = 3n, n = 0, 1, 2, . . . while (14) implies

un(x) =




1, if n = 0 (or c = 0)

2 + b − ax3, if n = 1 (or c = 3)

10 + 7b + b2 − 2a(5 + b)x3 + a2x6, if n = 2 (or c = 6)

· · ·
3n

(
b + 2

3

)
n

1F1

(
−n; b + 2

3
; ax3

3

)
, for n = 0, 1, 2, . . . (or c = 3n).

Similarly, for N = 3, the termination condition (11) yields c = 4n, n = 0, 1, 2, . . . while (14)
implies

un(x) =




1, if n = 0 (or c = 0)

3 + b − ax4, if n = 1 (or c = 4)

21 + 10b + b2 − 2a(7 + b)x4 + a2x8, if n = 2 (or c = 8)

· · ·
4n

(
b + 3

4

)
n

1F1

(
−n; b + 3

4
; ax4

4

)
, for n = 0, 1, 2, . . . (or c = 4n).

Similar expressions can be obtained for N = 4, 5, . . . . These results can be generalized
by (22). �

Theorem 5. If b = 0, the second-order linear differential equation (20), known as generalized
Hermite differential equation, has a polynomial solution if

c = n(N + 1), n = 0, 1, 2, . . . (23)
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or

c = n(N + 1) + 1 n = 0, 1, 2, . . . (24)

In the case of c = n(N + 1), the polynomial solutions are (for n = 0, 1, 2, . . .)

un(x) = (−1)n(N + 1)n
(

N

1 + N

)
n

1F1

(
−n; N

1 + N
; axN+1

1 + N

)
. (25)

In the case of c = n(N + 1) + 1, the polynomial solutions are (for n = 0, 1, 2, . . .)

un(x) = (−1)n(N + 1)n
(

2 + N

1 + N

)
n

x1F1

(
−n; 2 + N

1 + N
; axN+1

1 + N

)
. (26)

Proof. Similarly to the proof of theorem 4, the conditions (23) and (24) follow directly by
means of the termination condition (11), with λ0 = axN and s0 = −acxN−1. Equations (25)
and (26) follow from (14). �

Theorem 6. For N a positive integer, the differential equation

u′′ =
(

axN

1 − sxN+1
− b

x

)
u′ − wxN−1

1 − sxN+1
u, (27)

has polynomial solutions

un(x) = (−1)n

(N + 1)−n

(
N + b

N + 1

)
n

2F1

(
−n,

b − 1

N + 1
+

a

(N + 1)s
+ n; b + N

1 + N
; sxN+1

)
(28)

if

w = n(N + 1)(s(b − 1 + n(N + 1)) + a), n = 0, 1, 2, . . . (29)

where 2F1 is Gauss’s hypergeometric function (18). If b = 0, s = 1, then the cases of
a = 2 and a = 1 correspond to differential equations known as the generalized Legendre and
Chebyshev differential equations, respectively.

Proof. Using AIM, condition (29) for polynomial solutions follows by means of the
termination condition δn = 0 in a similar fashion to the proof of theorem 4. Equation (28)
then follows by means of (14) as generalization of the polynomial solutions for each of
n = 0, 1, 2, . . . and N = 1, 2, . . . . �

5. Conclusion

We have presented a simple criterion for the existence of polynomial solutions of second-
order linear differential equations. Many of the classical differential equations that appear in
mathematical physics can be analysed with this theory. Apart from its theoretical interest,
the criterion can be used in a practical way to look for and to obtain polynomial solutions to
eigenvalue problems of Schrödinger-type [11–18], and similarly for polynomial solutions of
quasi-exact solvable models in quantum mechanics [21].
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